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The electronic properties of doped bilayer graphene in presence of bottom and top gates have been studied
and characterized by means of density-functional theory �DFT� calculations. Varying independently the bottom
and top gates it is possible to control separately the total doping charge on the sample and the average external
electric field acting on the bilayer. We show that, at fixed doping level, the band gap at the K point in the
Brillouin zone depends linearly on the average electric field, whereas the corresponding proportionality coef-
ficient has a nonmonotonic dependence on doping. We find that the DFT-calculated band gap at K, for small
doping levels, is roughly half of the band gap obtained with standard tight-binding �TB� approach. We show
that this discrepancy arises from an underestimate, in the TB model, of the screening of the system to the
external electric field. In particular, on the basis of our DFT results we observe that, when bilayer graphene is
in presence of an external electric field, both interlayer and intralayer screenings occur. Only the interlayer
screening is included in TB calculations, while both screenings are fundamental for the description of the
band-gap opening. We finally provide a general scheme to obtain the full band structure of gated bilayer
graphene for an arbitrary value of the external electric field and of doping.

DOI: 10.1103/PhysRevB.79.165431 PACS number�s�: 71.15.Mb, 73.22.�f, 73.61.�r, 81.05.Uw

I. INTRODUCTION

Among the nanoscale forms of carbon, bilayer graphene
has recently attracted much interest.1–8 Indeed, it has been
found, both theoretically and experimentally, that in presence
of an asymmetry between the two graphene layers, generated
by an external electric field, a band gap can be opened. This
makes bilayer graphene a tunable-gap semiconductor and,
therefore, an exciting structure for future application in
nanoelectronics.

In particular, in the experiments of Ohta et al.3 bilayer
graphene is synthesized on silicon carbide �SiC� substrate,
and a small n-type doping is acquired by the system from the
substrate. In this case, the bilayer symmetry is broken by the
dipole field created by the depletion of charge on SiC and
accumulation of charge on the bilayer. Additional n doping is
induced by deposition of potassium atoms above the bilayer.
Varying the concentration of potassium atoms, one can vary
the asymmetry between the two sides of the system and mea-
sure the electronic properties and the band-gap opening by
angle-resolved photoemission spectroscopy �ARPES�.

Oostinga et al.4 used a double-gated system, where mono-
layer and bilayer graphenes are placed between two dielec-
trics, which act as bottom and top gates. The double-gated
structure gives the possibility to control independently the
doping level and the perpendicular electric field acting on the
system. In this configuration, they measure the dependence
of the resistance on the temperature and on the electric field.
They observe a gate-induced insulating state in bilayer
graphene which originates from the band-gap opening be-
tween the valence and conduction bands.

As for theoretical studies, McCann5 used a tight-binding
�TB� model to study the band structure of the bilayer
graphene in presence of an energy difference between the
two layers, which determines a band-gap opening. In particu-
lar, he considered a single gate acting on the system, and he
found a roughly linear relation of the gap with the accumu-

lated charge n on the bilayer, for n values up to 10
�1012 cm−2. Min et al.6 performed ab initio density-
functional theory �DFT� calculations of undoped bilayer
graphene in a constant external electric field, using the gen-
eralized gradient approximation �GGA� for the exchange-
correlation functional. They confirmed the general picture
provided by the TB model, although DFT screening results
stronger. Moreover, Aoki and Amawashi9 performed an ab
initio DFT study on the band structure dependence of un-
doped layered graphene on the stacking and external field,
using the local density approximation �LDA� for the
exchange-correlation functional. In contrast with the GGA
study of Min et al.,6 their results on undoped bilayer
graphene in a uniform external electric field are in agreement
with the TB ones. Again, Castro et al.7,8 showed experimen-
tally, by measuring the Hall conductivity and the cyclotron
mass of biased bilayer graphene, and theoretically, using TB
methods, that a band gap between the valence and conduc-
tion bands can be tuned by an applied electric field.

Other theoretical DFT studies have been devoted to the
understanding of the band structure dependence on the stack-
ing geometry,10 on the presence of adsorbed molecules,11 and
to the analysis of the distribution of the induced charge
densities.12 Instead, other experimental studies focused on
the Raman spectra of bilayer graphene.13–16 Recently, an ex-
perimental work on infrared spectra of gated bilayer
graphene as a function of doping appeared,17 and a compari-
son with TB calculations suggests that the TB prediction of
the gate-induced band gap is overestimated.

In this work, we study by means of DFT ab initio calcu-
lations the band-gap opening in bilayer graphene, both as a
function of the external electric field and as a function of
doping. The paper is organized as follows: in Sec. II a de-
scription of the system we investigate is reported, along with
the computational details. Results are presented in Sec. III,
where the dependence of the gap on the electric field and
doping is first shown and compared with TB calculations.
Then, a detailed analysis of the screening properties of the
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bilayer to the external electric field is reported. The effect of
the electronic temperature on the screening is also investi-
gated, and the nonmonotonic behavior of the band gap as a
function of doping at fixed electric field is explained. The
GW correction of the DFT-calculated response of the gap to
the external electric field is presented. Finally, a general
scheme to obtain the full band structure of gated bilayer
graphene is provided, and a comparison with experimental
findings is reported. In Sec. IV our conclusions are drawn. In
the Appendix we describe in detail the top and bottom gates
implementation in our DFT calculations.

II. THEORETICAL BACKGROUND

A. Bilayer graphene in bottom and top gates

The experimental setup where bilayer graphene feels dif-
ferent bottom and top gates is schematically represented in
Fig. 1. The bilayer is first grown on a dielectric material, of
width D2 and relative dielectric constant �r2. Applying a volt-
age difference Vg2 �bottom gate� between the dielectric and
the bilayer, a doping charge per unit surface n2e=�2Vg2 is
accumulated on the bilayer, where e is the electron charge
�e=-�e�� and �2=�0�r2 /D2. �0 is the permittivity of the
vacuum. Depositing another dielectric material of width D1
and with relative dielectric constant �r1 over the bilayer, and
applying a gate voltage Vg1 �top gate� between the dielectric
and the bilayer, an additional doping charge per unit surface
n1e=�1Vg1 is accumulated, where �1=�0�r1 /D1. A total dop-
ing charge ne is therefore accumulated on the bilayer, where
n=n1+n2. According to standard notation, positive n corre-
sponds to electron doping and negative n corresponds to hole
doping. �1 and �2 are the electronic charges per unit area
�with respect to the neutral case� accumulated on layer 1 and

layer 2, respectively. In particular, the sum of �1 and �2 is
determined by the electrostatics, and it is equal to the sum of
n1 and n2. However, the individual values of �1 and �2 de-
pend on the screening properties of the system, and in gen-
eral �1�n1 and �2�n2. In the configuration shown in Fig. 1,
layer 1 and layer 2 of the bilayer feel an electric field E1 and
E2, respectively, given by

E1 = − n1e/�0, �1�

E2 = n2e/�0. �2�

The average electric field Eav is defined as

Eav = �E1 + E2�/2,

=�n2 − n1�e/�2�0� ,

=�n1 − n2��e�/�2�0� . �3�

Positive Eav is oriented from dielectric 1 to dielectric 2 �i.e.,
from top to bottom gate�. When n1 and n2 are equal, we are
in the case of equal bottom and top gates, and Eav vanishes.
When n1 is zero, we are in presence of bottom gate alone.
The top gate can also be generated by a chemical doping,
with the deposition of alkali or halogen atoms on the bilayer.
In this work, the electric fields E1 and E2 are simulated using
periodically repeated boundary conditions by introducing di-
pole and monopole potentials, as described in the Appendix.

The presence of different bottom and top gates generates
an electrostatic potential which is different on layer 1 with
respect to layer 2, and this asymmetry gives origin to a band-
gap opening. In Fig. 2 we show the band structure of un-
doped bilayer graphene, in absence of bottom and top gates,
where no gap is observed, and in presence of different bot-
tom and top gates in which case a gap is opened. In order to
simplify the discussion, in this work we define a signed gap
U at the K point in the Brillouin zone �BZ�, which is nega-
tive for Eav�0 and positive for Eav�0.
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FIG. 1. Schematic representation of the experimental setup
where bilayer graphene is placed between two dielectric materials,
and it is doped by applying bottom �Vg2� and top �Vg1� gates. The
width of the two dielectrics is much larger than the distance be-
tween the dielectrics and the bilayer. A doping charge per unit area
ne= �n1+n2�e is accumulated on the bilayer, where n2e=�2Vg2 and
n1e=�1Vg1 are the charges from bottom and top gates, respectively.
�1e and �2e are the electronic charges per unit area �with respect to
the neutral case� on layer 1 and layer 2, respectively. In particular,
��1+�2�e= �n1+n2�e, while �1�n1 and �2�n2. Layer 1 and layer 2
of bilayer feel electric fields E1=−n1e /�0 and E2=n2e /�0, which
determine an average electric field Eav= �n2−n1�e / �2�0�. �0 is the
permittivity of the vacuum.
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FIG. 2. Band structure, around the K point in the BZ, of un-
doped bilayer graphene in absence of bottom and top gates �solid
line� and in presence of different bottom and top gates �dashed
line�.
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B. Computational details

The presented ab initio results based on the DFT are done
using both the Perdew-Burke-Ernzerhof �PBE� �Ref. 18�
GGA, and the Perdew-Zunger �PZ� �Ref. 19� LDA exchange-
correlation functionals. Core electrons are taken into account
using the pseudopotential method, with norm-conserving
Troullier-Martin pseudopotentials.20 Plane-wave basis set is
used to describe valence electron wave functions and density,
up to a kinetic energy cutoff of 40 and 600 Ry, respectively.
The electronic eigenstates have been occupied with a Fermi-
Dirac distribution, using an electronic temperature of 300
and 30 K. The BZ integration has been performed with a
uniform k-point grid of �80�80�1� and �240�240�1� for
the two temperatures, respectively. The experimental lattice
constant a=2.46 Å of two-dimensional graphite is used. The
layer-layer distance d is fixed at the value of 3.35 Å, as in
graphite. The two layers are arranged according to Bernal
stacking. The length L of the supercell along z is 17.2 Å.
Calculations have been performed using the PWSCF code21 of
the Quantum ESPRESSO distribution.22

In this work we perform also TB calculations. The TB
model we use is characterized by two parameters, �� and ��,
which represent the first nearest-neighbors in-plane hopping
and the interplane hopping between vertically superposed at-
oms in the Bernal stacking configuration, respectively. �� is
related to the Fermi velocity in single layer graphene, v f

=��a�3 / �2	�. We use a value of �� =3.1 eV, as inferred
from experimental measurements.3,13,23 Within the TB
model, 2�� corresponds to the band splitting between the
lowest occupied 
 band and the highest unoccupied 
 band
at K �see Fig. 2�. We use a value of ��=0.4 eV, as obtained
from experimental measurements.3,13,17 Similar values for
these TB parameters have been used in literature.5,7,8 In ad-
dition to these parameters, we consider the energy difference
between layer 2 and layer 1 induced by the electric field,
which coincides with the signed gap U at the K point in the
BZ �see Fig. 2 and Ref. 3�.

In the TB formalism, in order to obtain the relation be-
tween the gap U and the average electric field Eav, a simple
electrostatic model is used. In Fig. 3 we show a schematic

representation of this electrostatic model. Charges per unit
surfaces �1e and �2e are concentrated on the two layers of
the bilayer, which create a screened field E� inside the sys-
tem. Using simple electrostatic equations, we have

E� = Eav −
��e

2�0
, �4�

where Eav= �E1+E2� /2 and ��=�2−�1. �� is calculated
from the square modulus of the eigenfunctions in the two
layers. The energy difference between layer 2 and layer 1,
i.e., the band-gap U at K, is given by

U = − dE�e . �5�

Inserting into Eq. �5� the expression of E� as given in Eq. �4�,
and writing E1 and E2 as in Eqs. �1� and �2�, we obtain

U =
de2

2�0
�n1 − n2 + ��� . �6�

Therefore, in the TB calculations the electronic screening is
evaluated using the simplified electrostatic model described
above, contrary to the DFT formalism where the detailed
shape of the charge distribution is fully taken into account.

III. RESULTS

A. Band gap as a function of the external electric field
and doping charge

As anticipated in Sec. II A, when bilayer graphene feels
different bottom and top gates, a band-gap U is opened. In
this section we first investigate the dependence of U on the
average external electric field Eav, at fixed doping n.

In Fig. 4 we show the DFT-GGA calculated U as a func-
tion of �n1−n2� �i.e., the average electric field Eav divided by
�e� / �2�0�� for two values of electron and hole dopings. These
values of doping are chosen as representative of two differ-
ent doping regimes, which can be experimentally obtained in
bilayer graphene by the application of a gate voltage with a
SiO2 dielectric14 or with a polymeric electrolyte.15 Our re-
sults show that U has a linear dependence on the applied
electric field Eav. We therefore define a linear response ��n�
such that

U�n,Eav� = ��n��n1 − n2� . �7�

In Fig. 5 we show � as a function of doping n, calculated
from Eq. �7�, for an electronic temperature of 300 K, within
the DFT-GGA and LDA functionals, and using the TB model
described in Sec. II B. Contrary to previous results in
literature,6,9 our LDA and GGA results are very similar and
not in agreement with the TB ones. In particular, our results
for zero doping and GGA functional are in agreement with
the previous GGA study.6 They disagree instead with the
ones computed with LDA functional in Ref. 9. This is prob-
ably due to the fact that in Ref. 9 the authors used a coarse
k-point sampling �10�10�1� with respect to the ones used
in this work and in Ref. 6, and their results are likely uncon-
verged. In the following we only present our GGA results.
Both DFT and TB �’s display a nonmonotonic behavior as a
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FIG. 3. Schematic representation of the electrostatic model used
with TB calculations. The bilayer of thickness d feels an external
electric field E1 on layer 1 and E2 on layer 2, which induce a charge
per unit surface �1e and �2e on layer 1 and layer 2 and a local
electric field E�.
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function of doping. However, the values of the DFT-
calculated � are substantially different from the TB ones,
especially for low doping values, i.e., when the Fermi level
is close to the band-gap edges. This is the most interesting
case for the application of the bilayer as active device in
electronics.

We notice that in the absence of electronic screening, � is
independent of the doping, and it is

�bare =
de2

2�0
= 30.3 � 10−12 cm2 meV. �8�

Thus, with the inclusion of the electronic screening, the DFT-
calculated � becomes roughly three times smaller than the
�bare, which suggests that the screening effects are crucial for
the description of the band gap.

In order to understand the origin of the difference between
the DFT and TB results, we notice that this can be due �i� to
the calculated electronic band structure and charge transfer
and �ii� to the electrostatic model used in the TB calcula-
tions, which gives a simplified description of the crucial
screening effects, fully included in the DFT formalism. To
verify the quality of the electrostatic model, we introduce the
quantity �n� defined as

���n,U� = �n�U . �9�

��=�2−�1 is calculated from

�2 = �
0

�

���z� − �0�z��dz , �10�

�1 = �
−�

0

���z� − �0�z��dz , �11�

where ��z� is the planar average of the electronic charge
density �per unit volume� for a doping n and in presence of
Eav and �0�z� is the planar average of the electronic charge
density �per unit volume� for the neutral case, with Eav=0.
Here and in the following z=0 indicates the plane at the
midpoint of the two graphene layers. In our DFT calcula-
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�10−12 cm2 meV.
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tions, �� corresponds to �L /2, where L is the length of the
supercell along z.

 is a measure of the charge transfer between layers in the
presence of a band-gap U. We introduce this quantity be-
cause it is a direct outcome of the TB calculations, and no
further electrostatic model is needed to compute it. More-
over, according to the electrostatic model used together with
the TB formalism, described in Sec. II B, the relation which
gives � as a function of  is obtained dividing Eq. �6� by U,

��n� =
�bare

1 − �n��bare . �12�

In Fig. 6 we show �n�, calculated from Eq. �9�, for an
electronic temperature of 300 K, within the DFT and using
the TB model described in Sec. II B.  as a function of n has
a nonmonotonic behavior as found for ��n�, and this trend is
well described by the two methods. However, the values of 

calculated with the two formalisms are different. Since no
electrostatic model is used in the TB calculations, we con-
clude that this discrepancy originates only from the differ-
ence between the DFT- and TB-calculated band structure and
charge transfer.

Moreover, comparing the DFT and TB results of ��n� and
�n�, we see that, for low doping levels, the relative differ-
ence, with respect to DFT values, of the TB/DFT ��n�’s is
around 60%, while the analogous difference for  is around
30%. Therefore, the electrostatic model used to compute
��n� in the TB formalism introduces a large error in the
description of the band-gap opening in presence of an exter-
nal electric field.
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FIG. 9. �a� Planar average of the linearly induced charge �per
unit volume� ��1� for bilayer graphene in presence of an external
electric field Eav=1.6�e / �2�0�1012 cm−2 for a doping level n=2
�1012 cm−2 �continuous line� and n=38�1012 cm−2 �dashed
line�; �b� symmetric component, �s

�1�; and �c� antisymmetric com-
ponent, �a

�1�, with respect to each layer, of the linearly induced
charge ��1� shown in �a� for the same doping levels.
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B. Electronic screening effects

In this section we analyze where the simplified electro-
static model used in the TB calculations fails, and we pro-
pose a more sophisticated one. First of all, we know that in
the TB formalism the energy difference between the two
layers coincides with the band-gap U at the K point in the
BZ. In Fig. 7 we show the band-gap U as a function of
V2−1=V2−V1, where V2 and V1 are the planar average of the
DFT-calculated ionic, Hartree, and electrostatic potential en-
ergy on layer 2 and layer 1, respectively. The inclusion of the
exchange-correlation potential does not change the result.
We can notice that even in DFT formalism, U is correlated
with the potential energy difference between the two layers,
and in particular,

U = �V2−1, �13�

where �=1.072, slightly higher than the expected unitary
slope.

To better understand the screening effects in the system,
we investigate the linearly induced charge �per unit volume�
��1�,

��1��z;n,Eav� =
���z;n,Eav�

�Eav
Eav, �14�

	
1

2
���z;n,Eav� − ��z;n,− Eav�� , �15�

where ��z ;n ,Eav� is the planar average of the charge
density �per unit volume� at a given doping level n and in
presence of an external average electric field Eav. Such ��1�

is antisymmetric with respect to z=0, i.e., ��1��z ;n ,Eav�
=−��1��−z ;n ,Eav�. In our plots we use the finite difference
expression of ��1�, i.e., Eq. �15�.

In Fig. 8 we show ��1� for the graphene monolayer in
presence of an external electric field Eav=1.6
�e / �2�0�1012 cm−2 for two different doping levels. In this
case, obviously no charge transfer between layers occurs,
and the electronic screening to the external electric field is
only characterized by an intralayer polarization. Moreover,
we notice that the dependence of the induced charge on the
doping is negligible.

In Fig. 9�a� we show ��1� for bilayer graphene in presence
of the same external electric field. First of all, we notice that
��1� in the monolayer and in the bilayer are of the same order
of magnitude. Then, we observe that the electronic screening
of the bilayer to the external electric field is characterized by
�i� a charge transfer between the two layers, which is pecu-
liar to the bilayer and �ii� an intralayer polarization, which is
also present in the monolayer.

In order to separate in the bilayer the interlayer from the
intralayer polarization, we notice from Fig. 8 that the intra-
layer induced charge is antisymmetric with respect to each
individual layer. Thus we decompose the induced charge in
the bilayer into a symmetric component, �s

�1�, and an anti-
symmetric component, �a

�1�, with respect to each individual
layer. �s

�1� and �a
�1� are defined for z� 
−d ;d�, i.e., in an in-

terval of width d around each layer, where d is the intralayer
distance; they are calculated as

�s/a
�1��z� =

1

2

��1��z� � ��1��sign�z�d − z�� . �16�

The symmetric, �s
�1�, and antisymmetric, �a

�1�, components are
related to the charge transfer between the two layers and to
the intralayer polarization, respectively.

In Fig. 9�b� we show the symmetric component �s
�1�, with

respect to each layer, of the induced charge ��1� shown in
Fig. 9�a�. In Fig. 9�c� we show the antisymmetric component
�a

�1�. In particular, �a
�1� is very similar to the induced charge in

the monolayer �Fig. 8�, and it is on the same order of mag-
nitude of the total induced charge in the bilayer �Fig. 9�a��.
On the basis of this qualitative analysis of the linearly in-
duced charge, we conclude that the intralayer polarization,
which is not taken into account in the TB formalism, gives
an important contribution to the screening properties of the
system.

In order to quantify the effect of the induced charge on the
gap, we write the exact expression of the potential energy
difference V2−1 in terms of the linearly induced charge ��1�

and of the external average electric field Eav using the Pois-
son equation in one dimension. We obtain the following:

V2−1 = V�d/2� − V�− d/2�

= − deEav −
e2

2�0
�

−�

+� �d

2
− z���1��z�dz

+
e2

2�0
�

−�

+� �−
d

2
− z���1��z�dz , �17�

where �d /2= �1.675 Å is the z coordinate of the two lay-
ers. Considering that ��1��z�=−��1��−z�, by simple algebra
and without approximations we can rewrite V2−1 as

V2−1 = − edEav +
de2

2�0
�� + eDa − eDs, �18�

where

Da =
e

�0
�

0

d z −
d

2
��a

�1��z�dz , �19�

Ds =
e

�0
�

0

d �z −
d

2
��s

�1��z�dz , �20�

and

�� = �
0

�

��1��z�dz − �
−�

0

��1��z�dz . �21�

Da and Ds represent the contributions to the potential energy
difference V2−1 given by the antisymmetric and symmetric
components of the linearly induced charge around each layer.
Equation �18� gives the exact expression of V2−1 as a func-
tion of the external electric field and of the screening charge.

We now rewrite Da and Ds as follows:

Da = da�n�Eav, �22�
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Ds =
e

2�0
ds�n��� , �23�

where Da has a linear dependence on the average electric
field through a proportionality constant da which depends on
the doping n. Ds is instead the contribution to the interlayer
polarization coming from the width of the transferred charge.
Therefore we write it in a form consistent with the other
interlayer term in Eq. �18�, i.e., de2 / �2�0���, with a propor-
tionality constant ds which depends on the doping n.

In Fig. 10 we show da and ds as a function of doping n.
Since ds is almost independent of the doping and da has a
variation in the order of 5%, we replace them with their
average values calculated on the doping range considered,

d̄a=1.09 Å and d̄s=0.80 Å. Using only this approximation
and Eq. �13�, we have

U = ��− e�d − d̄a�Eav +
e2

2�0
�d − d̄s���� . �24�

We notice that the simplified electrostatic model described in
Sec. II B, i.e., Eq. �6�, used in TB calculations, is equivalent

to consider, in Eq. �24�, �=1, d̄a=0 �i.e., �a
�1��z�=0�, and d̄s

=0 �i.e., �s
�1��z�=���z�−d /2��� /2sign�z��.

Considering Eq. �24�, and the definition of � �as in Eq.
�7�� and  �as in Eq. �9��, we obtain another relation between
� and  as follows:

��n� =
�bare��d − d̄a�/d

1 − �n��bare��d − d̄s�/d
. �25�

Equation �25� gives the approximate relation between U, the
average electric field, the screening charge obtained consid-
ering the intralayer polarization, and considering the width of
the transferred charge between layers. This equation substi-
tutes Eq. �12� which comes from the simplified electrostatic
model described in Sec. II B.

In Fig. 11 we show the DFT-calculated ��n�, ��n� ob-
tained from Eq. �12� using the DFT-calculated �n�, and
from the electrostatic model of Eq. �25� using the DFT-
calculated �n�. One can see that the simplified electrostatic

model is not able to describe the DFT results. Instead, ��n�
obtained from the model of Eq. �25� is able to correctly
reproduce the DFT calculations.

C. Effect of the electronic temperature on �
as a function of doping n

In Sec. III A we have shown that in the bilayer the elec-
tronic screening to the external electric field is crucial for a
correct evaluation of the band gap. At low doping level the
screening is expected to depend on the broadening param-
eter, and in this section we investigate the effect of the elec-
tronic temperature on the screening and on �.

In Fig. 12 we show the DFT-calculated � as a function of
n for an electronic temperature of 300 and 30 K. The varia-
tion in screening with the broadening parameter depends on
the doping n. Since the doping levels which are interesting
for applications of the bilayer as active device in nanoelec-
tronics are small values around the zero doping, we focus on
this doping range.

In Fig. 13 we show the DFT-calculated � as a function of
the electronic temperature T for electron doping values be-
tween 0 and 5.72�1012 cm−2. In this range of doping, we

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

−40 −30 −20 −10 0 10 20 30 40

d a
an

d
d s

(Å
)

n (1012 cm−2)

da
ds
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can see that the difference between � at 300 and 30 K is
largest for zero doping. In particular, for zero doping the
band gap at 30 K results to be about 10% smaller than at 300
K.

D. Nonmonotonic behavior of � as a function of doping n

As shown in Figs. 5 and 6, both DFT-calculated � and 
have a nonmonotonic behavior as a function of the doping n.
� and  represent the linear response of U to the external
average electric field Eav and the linear response of �� to the
band-gap U, respectively. Up to now, we calculated � and 
for finite values of Eav and U. In this section we show that
perturbation theory �PT� explains the origin of this non-
monotonic behavior as a function of doping n.

For the numerical evaluation of the expressions obtained
from PT, we use the band structure calculated with the TB
model. Indeed, even if TB results for � and  differ from the
DFT ones, TB is able to catch the nonmonotonic trend of
these quantities as a function of the doping n. Moreover, we
limit our PT calculations to �n�. Indeed, since the relation
between  and � is monotonic �see Eq. �25��, the nonmono-
tonic behavior of  is able to explain also the nonmonotonic
behavior of � as a function of n.

In order to calculate �n� with PT, we consider Ĥk
�0�,

which is the unperturbed TB Hamiltonian. Ĥk
�0� is a 4�4

matrix which depends on the wave vector k and is written on
the basis of 2pz orbitals centered on the four atoms of the
unit cell, ordered as A, B, A�, B� �A and B are the two carbon
atoms on layer 1, A� and B� are the two carbon atoms on
layer 2, and in the Bernal stacking configuration A and A� are
vertically superposed�. In presence of a band splitting U �see

Fig. 2�, the Hamiltonian Ĥk can be written as

Ĥk = Ĥk
�0� +

U

2
��̂ , �26�

where

��̂ =�
1 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 − 1
� . �27�

Using first-order PT, we obtain the following expression for
= � d��

dU �:

 =
1

Nk
�

k,i,j�i

f��ik
�0� − �F

�0�� − f�� jk
�0� − �F

�0��
�ik

�0� − � jk
�0� ��� jk

�0����̂��ik
�0���2,

�28�

where ��ik
�0�� �i=1,2 ,3 ,4� are the unperturbed eigenstates of

Ĥk
�0� with eigenvalues �ik

�0�, �F
�0� is the Fermi level,

f��ik
�0�−�F

�0�� is the occupation of state i, and Nk is the number
of k points used in the BZ integration.

In particular, in Eq. �28� there are six contributions ob-
tained by mixing the four unperturbed states ��ik

�0��, with i
=1, 2, 3, and 4; and we label as i,j the contribution to 
given by states i and j. Within the present TB model 1,3 and
2,4 are exactly zero.24 Contribution 1,2 vanishes for �F
�0 because the two states are both occupied. Therefore, for
�F�0, the important contributions to  derive from 1,4,
2,3, and 3,4, as schematically shown in Fig. 14.

In Fig. 15 we show  as a function of the electron doping,
obtained from Eq. �28�, for an electronic temperature of 300
K. Different contributions from 1,4, 2,3, and 3,4 are also
plotted. For comparison, we report �n� calculated with the
nonperturbative TB model. Contribution 1,4 as a function of
doping is constant when the Fermi level is lower than the
bottom of band 4, and its absolute value starts to decrease
when band 4 becomes occupied due to lower availability of
empty states. Contribution 2,3 is minimum for zero doping,
and its absolute values decreases, as a function of the elec-
tron doping, for the same reason. Contribution from 1,4 is
lower than contribution from 2,3 due to the energy differ-
ence in the denominator of Eq. �28�, which is higher for 1,4.
Finally, contribution 3,4 vanishes for zero doping, and its
absolute value increases with increasing electron doping, due
to larger number of possible transitions between occupied
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and unoccupied states. The results in Fig. 15 show that the
nonmonotonic behavior of �n� is determined by the sum of
the three contributions 1,4, 2,3, and 3,4, which gives a
maximum at the electron doping values n�6�1012 cm−2.

E. GW correction

Recently it has been shown by ARPES measurements that
the electronic band structure of graphene and graphite is not
well reproduced by LDA and GGA.25 In particular, LDA and
GGA underestimate the slope of the bands since these ap-
proximations do not include long-range electron-correlation
effects. Such effects can fully be taken into account within
the GW approach �where the self-energy is computed from
the product of the electron Green’s function �G� and the
screened Coulomb interaction �W��, which is considered to
be the most accurate first-principles approach for the elec-
tronic band structure.26 The GW band structures for graphite
and graphene are indeed in very good agreement with the
ARPES measurements.27 In absence of an external electric
field, the DFT-calculated bands of bilayer graphene need to
be scaled in order to reproduce the GW-correct bands as

�ik
GW = ��ik

DFT, �29�

where �=1.18 is the scaling factor, as obtained from Ref. 27.
Such scaling factor can change the screening properties of
the bilayer, and in this section we include it in our theoretical
results.

If we focus on the quantity , we can use the perturbative
expression in Eq. �28�. In such expression, we correct the
DFT eigenvalues �ik

�0� using Eq. �29�, and we can neglect the

GW correction to the matrix elements �� jk
�0����̂��ik

�0�� since it
is commonly found that the DFT error in the wave functions
is usually negligible with respect to the error on the eigen-
values. Within this approximation, it is easy to show that

GW��F,T� =
1

�
DFT �F

�
,
T

�
� , �30�

where T is the temperature. The computed GW is shown in
Fig. 6.

�GW can be computed from GW using our model in Eq.
�25�. In order to minimize the error from our model, we write

�GW�n� =
�bare��d − d̄a�/d

1 − GW�n��bare��d − d̄s�/d
+ � , �31�

where

� = �DFT −
�bare��d − d̄a�/d

1 − DFT�bare��d − d̄s�/d
, �32�

gives an estimate of the error in Eq. �25�. The computed
�GW�n� is shown in Fig. 5, and for low doping levels it is
around 10% higher than the DFT value.

F. Full band structure of gated bilayer graphene

In this section we give a practical instruction to obtain the
full band structure of bilayer graphene for a doping n and for
an average electric field Eav. In order to do that, we fit our
DFT bands along all the �KM line in the BZ in absence of
the external electric field, using a TB model with five
nearest-neighbors in-plane hopping parameters
���

1 ,��
2 ,��

3 ,��
4 ,��

5� and three out-of-plane hopping parameters

���
AA� ,��

AB� ,��
BB��. In the Bernal stacking configuration of bi-

layer graphene, A and A� represent the vertically superposed
atoms. These hopping parameters do not change when an
external average electric field is applied. This is shown in
Fig. 16, where we compare the direct DFT results with the
TB calculations, with the fixed hopping parameters and the
U value from the DFT calculations.

Since we consider the GW one as the most precise result,
in Table I we report the TB-GW hopping parameters obtained
by fitting the DFT bands without electric field and by rescal-
ing them with the GW scaling factor �=1.18. Moreover, in
order to avoid the numerical evaluation of U for a given n
and Eav, we give a fit of our calculated �GW�n�,
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�GW�n� = �
i=1

3
Ai

�1 +
�n−Bi�2

�i
2 �

+ C , �33�

where the values of the fitting parameters are listed in Table
II. In Fig. 5 we show the results of the fit with the black
continuous line. From expression �33�, we can obtain the
value of the gap U as a function of the doping n and of the
external average electric field Eav,

U�n,Eav� = �GW�n��n1 − n2� , �34�

where �n1−n2�=Eav / ��e� / �2�0��. n, n1, and n2 are in units of
1012 cm−2.

G. Comparison with experimental results

In this section we compare our DFT and TB results with
the direct measurement �ARPES� of the band gap on epitaxi-
ally growth bilayer graphene in Ref. 3. In this work Ohta et
al.3 performed an experiment where bilayer graphene is syn-
thesized on silicon carbide �SiC� substrate. The SiC acts as a
fixed bottom gate, and a charge n2 flows from the substrate to
the bilayer. Further electron doping is induced with the depo-
sition of potassium atoms on the other side of the bilayer,
and this chemical doping acts as a top gate. Varying the
concentration of potassium, the asymmetry between the two
layers of graphene is modified, and a band gap is opened
accordingly. Using angle-resolved photoemission spectros-
copy Ohta et al.3 directly measured the band structure, and
fitting it with a TB model, they obtained a curve of the gap as
a function of the doping charge in the bilayer.

To compare with their experimental results, we calculate
the gap using �GW�n� from Eqs. �33� and �34� and keep n2
�bottom gate� fixed at 11.9�1012 cm−2. This value of n2

derives from the fact that in Ref. 3, for a total doping of n
=23.8�1012 cm−2, no gap is observed, meaning that n1
=n2=n /2. Since in the experiment the bottom gate is not
varied, we also keep it fixed to this value, and we only vary
n1=n−n2.

In Fig. 17 we compare our results, obtained with �GW and
with �TB, with the experimental data from Ref. 3 We first
notice that the nonlinearity is not due to the saturation of the
gap with Eav; it is instead due to the dependence of � on the
doping n �at high doping � decreases with n�. Moreover,
both GW and TB results are in good agreement with experi-
ments. This is due to the fact that the experiment is carried
out at high doping levels, where the difference between the
GW and TB �’s is less important with respect to low doping
levels �see Fig. 5�.

In the case of exfoliated bilayer graphene, direct experi-
mental measurements of the band structure and of the gap
with ARPES are still unavailable. Alternatively, indirect in-
formation on the band structure can be obtained by infrared
reflectivity studies. Recently, Kuzmenko et al.17 reported an
experimental work on infrared spectra of exfoliated and
gated bilayer graphene as a function of doping. In this work
the authors found a strong gate-voltage dependence of their
spectral features, which are related to interband transitions. A
comparison of the experimental infrared spectra with the one
obtained from TB calculations suggests that the TB predic-
tion of gate-induced band gap is overestimated.17 However, a
quantitative analysis of the band gap as a function of doping
and external field is not given.

Finally, by measuring the cyclotron mass as a function of
doping in bilayer graphene one can check the presence of a
finite band gap. These measurements do not provide a direct
estimate of the band gap; however, they give important in-
formation on the hole-electron asymmetry and on the defor-

TABLE I. TB-GW parameters obtained by fitting the bilayer DFT bands with a TB model, along all the
�KM line, and by rescaling the parameters with �=1.18. ��

i is the i-nearest-neighbors hopping parameters.
All values are in eV.

��
1 ��

2 ��
3 ��

4 ��
5 ��

AA� ��
AB� ��

BB�

TB-GW −3.4013 0.3292 −0.2411 0.1226 0.0898 0.3963 0.1671 0.3301

TABLE II. Values of fitting parameters of Eq. �33�. All values
are in 10−12 cm2 meV.

A1 0.896

B1 −26.888

�1 21.756

A2 3.905

B2 1.623

�2 21.946

A3 −1.654

B3 −0.092

�3 5.534

C 5.848
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FIG. 17. �Color online� Comparison between experimental re-
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mation of the band structure in the presence of an external
electric field. In particular, in Refs. 7 and 8 the authors mea-
sured the cyclotron mass on exfoliated bilayer graphene. The
bottom gate is realized with an oxidized silicon substrate,
which allows a variation in bottom gate electron density n2
during the experiment. The top gate is provided by chemical
doping, by deposition of NH3 molecules, which provides a
top gate electron density n1, which is fixed during the experi-
ment.

To compare the experimental results of Refs. 7 and 8 with
our band structures, we calculate the cyclotron mass mc as

mc�n� =
	2

2

dA�E�

dE
�

E=Ef�n�
, �35�

where A is the k-space area enclosed by the orbit with energy
E and Ef is the Fermi level. The derivative in Eq. �35� is
obtained by finite differentiation with respect to E. For the
GW calculations we use the band structure calculated as de-
scribed in Sec. III F.

In Fig. 18 we compare the experimental data on the cy-
clotron mass from Ref. 7 with our �Fig. 18�a�� GW calcula-
tions and with �Fig. 18�b�� TB calculations28 for different
values of top gate electron density n1. In Ref. 7 the authors
estimated an initial doping n0 on bilayer graphene, at zero
bottom gate, of about 1.8�1012 cm−2. In principle, such ini-

tial doping could come both from the deposited NH3 mol-
ecules �i.e., from the top gate� and from a charge transfer
from the SiO2 substrate �i.e., from the bottom gate�. Thus an
exact estimation of the top gate electron density n1 is not
possible, and we calculate the cyclotron mass for values of
n1 between 1.8�1012 cm−2 and 0. Our results show that for
both GW and TB calculations, the cyclotron mass behavior
as a function of doping depends on the value of n1. In par-
ticular, for the GW calculations the best agreement with the
experimental results is obtained for n1=0.45�1012 cm−2.
Finally, we note that our GW calculations give better results
than the TB ones. In particular, contrary to the TB results,
they are able to reproduce the hole-electron asymmetry.

IV. CONCLUSIONS

We present a detailed ab initio DFT investigation of the
band-gap opening and screening effects of gated bilayer
graphene. First, we analyze the response of the band gap to
the external average electric field at fixed doping. We show
that this response is linear for different electron and hole
doping values and for large electric field values. We then find
that the linear response of the gap to the electric field has a
nonmonotonic behavior as a function of doping, and for low
doping values it depends on the temperature.

We also perform TB calculations for the band-gap open-
ing. At low doping values, which are the interesting ones for
electronic applications, we find that the DFT-calculated gap
is roughly half of the TB one. Since the band gap strongly
depends on the screening effects, we perform a detailed
analysis of the charge distribution in the bilayer in presence
of the external electric field. We show that the electronic
screening is characterized by interlayer and intralayer polar-
izations. The latter one, not included in TB calculations,
gives an important contribution to the band-gap opening.

On the basis of this analysis, we propose a model which
significantly improves the description of the electronic prop-
erties of bilayer graphene in the presence of an external elec-
tric field, and finally we provide a practical scheme to obtain
the full band structure of gated bilayer graphene for arbitrary
values of the doping and of the external electric field.
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APPENDIX: DIPOLE AND MONOPOLE POTENTIAL

Standard plane-wave ab initio codes work with periodi-
cally repeated supercells. When doping the sample with a
total charge neA �A is the area of the section of the periodic
cell parallel to the graphene plane� a compensating uniform
background charge �with opposite sign� is added in order to
have a neutral system and, thus, a periodic electrostatic
potential.

In this work, we use a different approach, and we add a
“monopole,” that is a uniformly charged plane equidistant
from the two graphene layers, with total charge −neA. This is
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done by adding in real space a periodic potential energy
given by

Vmon�z̄� = −
ne2

2�0
− z̄ +

z̄2

L
� , �A1�

where z̄=z−zmon, zmon is the z coordinate of the monopole
plane, and z̄� �0;L�, where L is the length of the supercell
along z. While the linear term of Vmon is the potential asso-
ciated with the monopole plane, the quadratic term cancels
the potential associated with uniform background. Vmon can
be added to the electrostatic potential acting on the Kohn-
Sham electronic states with a straightforward implementa-
tion. The resulting system is, as a whole, neutral and
periodic.

In Fig. 19 we show the planar average of the ionic, Har-
tree, and monopole potentials, multiplied by the electron
charge. The position of the first and second layers of the
bilayer in the supercell is indicated, together with the mono-
pole position. The distance between the monopole and the
bilayer is 6.93 Å. This figure corresponds to a doping charge
on the bilayer n=19�1012 cm−2 and to an experimental
setup where the bottom and top gates are equal, and no gap
opening is expected.

In order to have different bottom and top gates, we add to
the monopole a sawlike potential, called dipole potential,29

generated by two planes of opposite charge, as implemented
in standard distributions of the PWSCF code.21 The dipole is
centered around the monopole, and the distance between the
dipole planes is kept fixed to 0.17 Å. In Fig. 20 we show the

planar average of the ionic, Hartree, monopole, and dipole
potentials multiplied by the electron charge for a doping
charge n=19�1012 cm−2. In the case shown in the figure,
the dipole potential is chosen to create a flat potential and
zero electric field on layer 1 of the bilayer. This configuration
corresponds to the case where only a bottom gate acts on the
bilayer. By changing the sign to the dipole potential, we can
obtain the opposite configuration, with a flat potential and
zero electric field on layer 2 of the bilayer.

The electric fields E1 and E2 are calculated from the pla-
nar average of the ionic, Hartree, monopole, and dipole po-
tential energy V1�z� and V2�z� on side 1 and side 2 of the
bilayer, respectively, as

E1 = − 1

e
�dV1�z�

dz
, �A2�

E2 = − 1

e
�dV2�z�

dz
. �A3�

In order to deal with uniform E1 and E2 electric fields, these
derivatives are calculated in the linear part of V1�z� and V2�z�
�see Fig. 20�.

Varying independently the dipole potential and the total
charge on the sample and monopole, one can explore all the
situations with different doping n on the bilayer and different
Eav= �E1+E2� /2.
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FIG. 19. Planar average of the ionic, Hartree, and monopole
potentials multiplied by the electron charge. This figure corresponds
to a doping charge on the bilayer n=19�1012 cm−2. The positions
of the first and second layers of the bilayer and of the monopole in
the supercell are indicated.
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FIG. 20. �Color online� Planar average of the ionic, Hartree,
monopole, and dipole potentials multiplied by the electron charge.
The positions of the first and second layers of the bilayer, of the
monopole, and of the dipole in the supercell are indicated. This
figure corresponds to a doping charge in the bilayer n=19
�1012 cm−2. The dipole potential is such that layer 1 of the bilayer
does not feel any external electric field.
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